Corrosion of Unexploded Ordnance in Soil Environments

December 18, 2001

Praxis Environmental Technologies, Inc.

U.S. Army Environmental Center

Outline

- Munitions Source Terms
- Various Transport Pathways
- Relative Rates of Release
- Corrosion
 - Problems & Objectives
 - Prior Work Models & Romanoff
 - Work to Date
 - Assumptions
 - Approach/ Sample Parameters
- What we don't know & what we do know

Potential Munitions Source Terms

- High order detonations
- Low order detonations (rate~0.28%)
- UXO (3.45% overall dud rate ~20yrs)
 - Mechanical or corrosion
 - Ruptured rounds
- OB/OD
- Buried caches

Potential Pathways

- Surface water (high order, low order, OB/OD)
- Air (primarily high order)
- Groundwater (ALL potential sources)

Relative Rates of Release

- Chemicals & mass in each category?
 We are here
- How much surface area is exposed of each source category?
- At what point in time is this surface area

exposed?

High order =
very small mass/ordnance,
many ordnance,
very high surface area,
instantaneously exposed

Low order (.28%)
= nearly same mass as dud,
higher surface area,
instantaneously exposed

Dud (3.5%)= delayed exposure, low surface area and diffusion must take place first, but large mass

Corrosion: Problem & Objectives

Problem: UXO source term unknown

- Objectives:
 - Identify UXO perforation mechanism
 - Identify UXO perforation characteristics (size, shape, placement)
 - Confidently predict time to perforation in soil
 - Characterize energetic concentrations

Prior work - UXO Corrosion MODELS & Data Sets

- California Chart for Culverts
 - Resistivity
 - pH
- DECHEMA is qualitative (soil type, salts etc.)
- Lafayette Regression equation (our '99 work)
 - Resistivity, HCO_{3.} Cations
- DOE quantitative (time, temperature)
- Romanoff prolific data on metals in various soils

Prior Work - UXO Corrosion MODELS vs Romanoff's data

Prior Work - UXO Corrosion Order-of-Magnitude Estimates

- Romanoff max. penetration:
 - 1)aerated & acid 0.27 "/100 yr
 - 2) poorly aerated 1.4 "/100 yr
 - 3) alkaline & salts 0.76 "/100 yr
 - 4) sulfides 0.6 "/100 yr
- Munitions Thickness
 - grenades 0.2 " ...14 yrs in worst soil
 - Mortars 0.5" ... 35.7 yrs in worst soil
 - Bombs 2 " ...should be unperforated

UXO Corrosion Work to Date

- '98/'99 Literature review & low fidelity model
- 7 UXO samples from 3 sites analyzed
- Ongoing- MMR- 100 data points
- Fundamental perforation data & model development - 200 additional data points at 6 ranges
- 15 UXO will be examined in detail for explosives beneath

UXO Corrosion Current Assumptions

- Corrosion is an important element of fate and transport for UXO
- Corrosion from outside only
- Considering pitting corrosion, MIC, crevice, or SCC, as well as structural failure
- All metals are equal
- This work will take a new look at these assumptions - by collecting data on real UXO

neiserred OXU Approach

Soil Parameters

Build a Database
Analyze Data
Build Model

UXO Parameters

User Friendly PC Model = years to perforation

2

PC Model User's Guide

UXO Corrosion Potential Sample Parameters

- Grain-Size Analysis
- Resistivity
- Moisture Content
- Bulk Density
- Total Porosity
- permeability
- Plasticity
- Aerobic Bacteria
- Anaerobic Bacteria
- Sulfate Reducing Bacteria
- Acid Producing Bacteria
- Size of Populations
- Microscopic Bacteria Analysis

- pH
- Buffering Capacity
- Sodium
- Sulfate
- Sulfide
- Chloride
- Redox potential
- Total Dissolved Solids

- X-ray Diffraction
 - Pit Depth & count
- Surface Area
- Hardness
- Micro Examination
- Chemical Analysis
- Photographs
- Deformation
- Closure integrity
- Perforation Size/ Shape/ Placement

UXO Corrosion POTENTIAL KNOWN AGE SITES

- Beale AFB CA
- Camp Maxie TX
- Buckley CO
- Conway SC
- Camp Cross SC

What We Don't Know

- Physical characteristics of the sources (mass, surface area, high order deposits composition)
 - How do we characterize pore fluids in the unsaturated zone
 - How do we physically characterize surface energetic particulates?
- Time to release for duds
- After initial release: relative proportions of diffusion, advection, dispersion, adsorption, degradation

If the source is small enough...does anything get to the water table?

What We Know

- Parameters that influence range constituents transport (REST application)
 - Mass
 - Vertical 24-hour storm event, sediment characteristics, vegetation, slope
 - Air sediment characteristics, vegetation, wind speed
- Explosives adsorb to clays & organics similar to Lead, except RDX
- Explosives degrade aerobically (unlike lead), except RDX